
*0 A051 269 MISSION RESEARCH CORP SANTA BARBARA CALIF F/S 10,1*AX ISYMMETRIC DA*INS OF CYLINORI CA I. CAVITY MODES By SHEET DAPfl——tT c uj,M~S 77 ft STETTIICR. ft MARKS ONA0O1~77~C..ooo9uNCLASUFIED I C—R- 3U ONA—457ST

EN D
O A T E

FIL MI  D

4 —78



-

It __ 2.2
36

I.’ ~ 
HIH~°
Illll~ 8

1 .25 
~~ IIIII~

MI( I~i . I~~Y I~1 LU UN t I ST CHAR1

~~~~~~~ IMJHIA~ I A



/

/7~
j_g 3 (~ ~ / /- /

DNA 4378T

~ AX ISYMMETRIC DA MPING OF

~~ CY LINDRICAL CAVITY MODES / 0
~ BY SHEET DAMPERS

Mission Research Corporation
735 State Street

Santa Barbara, California 93101

August 1977

~~ Topical Report

C-)
CONTRACT No. DNA 001-77-C-0009

•

APPROVED FOR PUBLIC RELEASE;

r DISTRIBUTION UNLIMITED.
~~~

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMSS CODE B323077464 R990AXEE50 104 H2590D.

D D C
t?T~EEf~ t?~flW11?fl
U MAR 17 1978

Prepared for — 1.~1J U Lb
Director B
DEFENSE NUCLEAR AGENCY
W ashington, D. C. 20305

— — ~
--— _—u*l___.-_I



—
____ 

-
- 

—

V

*

Destroy this report when it is no longer
needed . Do not return to sender.

11
4

H I
.o~~4

1~~_ _ _  

_ _ _ _ _ _ _ _ _ _



~
D

~~~~~~~
1c

~~LI
S E C U R I T Y  C L A S S I F I C A T I O N  OF TH IS  P A C E  ( W1,.n t) ~~I. Fnlered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I R F PO RT  NUMBER 2 GOVT ACCESS ION NO. 3 R E CIP I ENT~ S C A T A L O G N U M B E R

DNA_4378T I _____________________________

Top i cal - 7
~~~~~~ 

A T I T L E  (~~~d SubII1Ie _________________________

~~~X I SYMMETR I C~~~MPING OF cyLINDR~~~~~A~ ITy 
C O V E R E D

~~MPE R S . — 

~~~~~~~~~~~~~~~~ NUM BER

_________ _______________ ____________________ 
RC-R-328_/

__________ NT R A~~T~~I G R A N T  NUMBER(n)(~ ~~~ober!~ Marks
_ _  

~~~~~~~~ Afi1~~7-C~~~ 9

PER FO R M I N G O R G A N I Z A T I O N  N A M E  AND A D D R E S S  10 P R O O R A M  E L E M E Nt  P R O J E C T , T A SK

Mission Research Corporation A R E A  8 w ORK UNIT  NUMeER _______NWiD Subtask735 State Street
Santa Barbara , Cal i forn i a 93101 ~~ 

~~ ~1! !~ ~
‘E501-O4~~~~~~~~~~~ 

!
~~~.J

II ( . ‘J 7 ROLLING O F F I C E  N A M E  A N D  A DDRESS

Defense Nuclear Agency
Di rector 

~~ _____________

Washington ,_ D. C. 20305 42 /
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ NAME A A DDRFSSDI i i I l , ’ r e r , r  from Cont r o ll i ng  Ol I i c ~~) IS SECU Y~~~L A o I ~~~~~~~~~~~

UNCLASSIFIED
I5~ D E C L A S S I F I C A T I O N  D O W N G R A D I N G

SCHEDULE

5 D I S T R I B U T I O N  S T A T E M E N T  (of Ih,~ R e p o r f )

Approved for public release ; distribution unlimited .

17 D ISTRIBUTION S T A T E M E N T  (of IS, .h.fr~ cI eOIere. I  n flIo.-k 20. if diIf~ r~ nt from RCpOrI ,

1 8 S U P P L E M E N T A R Y  N O T E S

This woric/sponsored by the Defen~~ Nuclear Agency under RDT&E RMSSCode B32
,
~Q77464 R99QAXEE5O1O4 H2~~?D.

IA K E Y  WORDS (Co n t inue  on , 0 0 f l O C  cEde .  i f  necessary and I d e n t I t y  5y block number)

Cavity Mode Damper
Resistive Sheet Damper
Resonant Cavit ies

A BS T R A C T  (Cont inu e.  on r e v e rs e  cede  If ne es. . ry and I d e n t i f y  f’v block number) 
——__________

The equations for a two-sheet cylindrica l , resistive damper , with no end caps
are derived for TM cylindrical cavity modes. These equations are solved in
first order. Optimum damper position , resistance , and cav ity Q are discussed
in light of this solution .

DD 1 j A N 13 1473 ED I T I O N  OF I NOV AS IS O B S O L ET E  
UNCLASSIFIED

S E C U R I T Y  C L A S S I F I C A T I O N  OF THIS  P A G E  (When flat.. Entetedt

- ~~
. 

_ _ _ _ _  
_



0’

CONTENTS

PAGE

ILLUSTRATIONS 2

TABLES 4

SECTION

1 INTRODUCTION 5

2 HEURISTIC ANALYSIS OF MEMBRANE DAMPER 7

3 THEORY
3. 1 ONE AND TWO SHEET DAMPERS IN THE FORM OF A

CYLINDER WITH OPEN ENDS 12

3.2 AN APPROXIMATION FOR ONE AND TWO SHEET DAMPERS 17

4 RESULTS 21

5 CONCLUSIONS 37

REFERENCES 38

*CCE5SiON for

~flI$ White Section ~
But I Sectiofi Q

UNANNOUN CED a
MIIFICATION

NY

~~t. AVAIL and/or ~PEt~~

-~~~~~~~~__ _ _  

~~~~~
- - : .  

1



V

ILLUSTRATIONS

FIGURE PAGE

1 Cross section of a cylinder with membranes . 14

2 Optimum resistance vs. a, for p = 0, n ~ 5. 22

3 Optimum resistance vs . a, p = 5, n � 5. 22

4 Optimum resistance vs. a, p = 10, n = 5. 23

vs. a. 23

6 vs. a. 24

7 6~~ vs. a. 24

8 vs . a. 25

vs. a. 25

10 
~i2 VS. a. 26

~22 V 5 •  ~~~. 26

12 632 vs. a. 27

13 6
~2 vs . a. 27

14 652 vs. ~~
. 28

15 vs. a. 28

16 vs. a. 

292



FIGURE PAGE

17 ~~ VS~ a. 29

18 ~~ vs. a. 30

19 6~5 VS. a. 30

20 Unp VS. Z~ 11
. 36

v

3



TABLES

TABLE PAGE

1 Q(n,p) for two damper sheets at a = .8 and a = .92. 33

2 X~/f5~~ for two damper sheets at a = .8 and a = .92. 33

3 Damping time for TM cyl indrical tank modes (In
nanoseconds). 34

4 Optimum resistance (ohms) for sheet at a = .8. 34

5 Optimum resistance (ohms) for sheet at a = .92. 35

_  

- .-
~~ ~~~

-_.



SECT ION 1
INTRODUCT ION

One of the most undesirable concomitants of simulat ing SGEMP in

a vacuum tank is that cavity oscillations are excited . Because the Q (Q
is def ined as the number of periods necessary for the energy to decay to
e 1 times its initial value) of these tanks is much larger than 1 , the

cavity oscillations can interfere with the experiment for the entire dura-

tion of the data taking , after a time interval equal to the clear time of

the tank. To rid the experiment of these oscillations a number of dampers

have been suggested . In analyzing the effect of these dampers different

methods have been used. This report will concern itself with , hopefully,

elucidating the effect of one of these types of dampers using a modal-type

analysis.

A damper which is inexpensive and easy to construct (relative to

other types of dampers) is the membrane damper. M. Messier 1 has evaluated

the effect of a one and two sheet , membrane damper using a reflection coef-

ficient analysis. Although this type of analysis does not directly utilize

the concept of energy absorption in the membrane the reflection coefficient

analysis has been shown , by M. A. Messier ,2 to be nearly equivalent to an

analysis which does use the concept of energy absorption . Nevertheless ,

it is important to describe “how” the membrane damper actua l ly  damps
modal oscillations. In this report we first investigate how the damper

works by some heuristic arguments and t hen a more exact analysis is done.

These heuristic arguments will be made in Section 2. The more exact

analysis is made for a one or two sheet damper , and can be used to evaluate

5



the transverse magnetic mode damping for a cylindrical tank . This latter

analysis is contained in Section 3 and is based upon modal arguments similar

to those of W. A. Seidler 3 and C. Baum .~ In Section 3, our deriva tion of
the more exact equations for a damper analysis will assume that the damper

sheets are cylinders with no end caps. (The heuristic analysis suggests

that end caps might decrease the Q of the tank by a factor proportional to
the area of the end caps, for modes which have an electric field in the

radial direction.)

Part of the conclusions which can be drawn from the heuristic

analysis of Section 2 are based upon assuming that the modes of the tank are

not appreciably changed by the damper sheets. Although the relations

derived in Section 2 show how the variation of parameters effect damping,

they can ’t really be used to design a damper; the relations are too

inaccurate. In Section 3.2 we make a first order approximation , to the

exact equations derived in Section 3.1 , to obtain an accurate approximation

of the relationship between modes, damper positions and sheet resistance.

The first order approximation is based on assuming that the modes do not

appreciably change when damper sheets are introduced in the tank .

In Section 4 the results of Sections 2 and 3 are compared and

fur ther concl usions are drawn . Graphs and tables are presented that should

be useful  in design ing sheet dampers. Final ly  in Section 5 we summar ize

our results and conclusions.
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SECTION 2

HEURISTIC ANALYSIS OF MEMBRANE DAMPER

We shall try to show , in a somewhat heuristic way , what physics

goes into a sheet damper analysis; the sheet damper is contrasted with

damping due to cavity walls of finite conductivity. In our analysis , we
will demonstrate what parameters the Q of the cavity depends upon. We will

also get a ball park numerical answer for sheet resistance. We explicitly

consider only one damper sheet . If ~ is the energy in a cavity then the

rate of change of the energy is the Joule heat loss:

d~ 
-~ -*EdV , (1)

where is the current in the sheet and is the electric field in the sheet.

If A is the area of the sheet , d its thickness , ~ its conductivity and E,,

the field parallel to the sheet then

d~ 2
= - AdciE,, , (2)

where we have assumed that the current in the sheet is related to ~ by

+ +
J =

-4.
and that E is roughly constant over the thickness d. This latter condition

is satisfied if

1 (3)

where 6 is the skin depth for a mode which has the period i and a sheet

whose resistance is R (sec/cm).

. 4 7



To relate the parameters in Equation 2 to the Q of the cavity we

must relate E,~ to the energy in the cavity. In general

~~~= 2VE~ , (4)

where V is the volume of the cavity. Also , we may have

(5)

Combining Equations 4, 5 and 2 we find

(6)

Defining the Q of the ..~avity as the number of periods , T, for the energy to

decay to e ’ of its initial value , we find that

(7)

where

d~ - 

~~-t , 
(8)

if the damper does not charge the period appreciably. For a cylindrical

cavity, of radius R the period T of the 1st mode can be approximated by

2.4R (9)
c

Substituting (9) into (7) we find that the Q for the 1st mode is approximated

by

Q~~~~~ j- (~~_) cR (10)

where we have made use of the relations

V = TTR 2h , (11)

A = 2ri R
0h , 

(12)

8
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R = (ad ) 1 
. (13)

In Equation 12 we have assumed that the area of the damper comes from a

cylindrical sheet of radius R
0 
with no end caps. Equation 10 is the equa-

tion we are seeking.

We can obtain a ball park estimate of the sheet resistance R from

Equation 10:

R = 2 4 ~ 
(~9i ~~~e c \ R 1  cm

= 72 Q (ohm) , (14)

if R
0/R 

= .8 and Q = I then R is 58 ohms. That is wr should expect a sheet

resistance of the order of 100 ohms . Q equal to 1 is about the smallest

value Q can have without appreciably changing the period of the mode; R
0/R

equal to 18 is a convenient position For the damper.

Equation 10 suggests that the Q can be made smaller by reducing
the resistance R

e 
or increasing the sheet position radius R0. The actual

relationshi p between R0, Re and Q for a given mode , however , depends upon

how the fields actually vary with position in the cavity and is more

complex than Equation 10. (For example , in the present discussion we

assumed that the electric field parallel to the damper is constant in the

cavity, whereas, in fact, it vanishes at the walls of the cavity.) With an

accurate calculation Q is minimized with respect to R
0 and Re~

We can get an impression of how end caps on the conducting sheet

might affect the damping by investigat i ng Equation 7. From Equation 7 we

see that the Q of a cavity is inversely proportional t~ the area. The ratio

of the area of a cylinder with end caps to one with no e:id caps is (1 + R/h).

For h equal to 6 meters and R equal to 2 meters this ratii) would he 4/3. A

damper which was a complete cylinder might have a Q about 25 percent smaller

9 
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than a damper which has no end caps. This latter statement has meaning

only for modes which have electric fields in the radial direction ; in general

the energy in the radial electric field should be about equal to the energy

associated with the electric field in the z direction .

From Equation 10, we can understand how sheet damp ing differs

from that of damping due to the walls of the tank alone. If R
0 

.8R , in

Equation 10 , then

Q ~33 cR . (15)

From Reference S the Q for the lowest mode of a cavity, Q, whose length
is three times its radius is

(16)

Equation 16 expresses the Q for a cavity whose damping depends only on th~
finite conductivity of its walls. A bar over a quantity will refer to

this latter cavity. 5 is the skin depth and is given by

(17)

Using Equation 9 to approximat e 6 we have

(18)

Substituting (18) into (16) we find that

( .48)  —
~~~~~~~~ . (19)

If we define an effective “sheet resistance” by

(20)

then

10



Q .48 e

_
~~

2 
(21)

Increasing the conductivity or decreasing the sheet resistance has the

opposite effect for the two types of damping. The difference between

Equations 15 and 21 arises because Equation 20 is really a second order

effect . That is , the E fields parallel to the cavity wall are assumed to

be zero in first order . Damping at the walls appears because the E fields

at walls are not quite parallel to the walls. Equation 15 is the result of

a first order calculation ; that is the E field parallel to the damper is

non-zero in first order.

11 
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SECTION 3

THEORY

3. 1 ONE AND TWO SHEET DAMPERS IN THE FORM
OF A CYLINDER WITH OPEN ENDS

In this section we derive the mathematical relationshi p which

relates the position of the damper sheets and their conductivity to the com-

plex frequencies of the cavity. The frequencies are complex because the

damper sheets have introduced modal damping. This damping appears in the

ma~henatics as an imaginary part of the new modal frequency. We begin by

assuming that we have a cavity in which axisymmetric modes have been es-

tablished . The cavity, except for the membranes , is empty. The membranes

will be assumed to be open ended cylinders; only two membranes will be

considered .

Figure 1 depicts the physical situation. The membranes are treated

as boundaries between regions I , II and III. In these three.source free

regions,Maxwell’s equations are

~~ rB) + = 0 , (22)

r 
= - (23)

C ~t

and

~ 
(r B) , (24)

12



where a subscript z or r refers to the z or r cylindrical coordinates

respectively, E and B refer to electric and magnetic respectively. Assuming

that the time dependence can be represented by e1Wt and defining k2 (u/c)2 -

(p~r/L)
2 we can solve for the fields in the three regions in term s of a series

of Bessel functions and the trigonometric functions sin(plTz/L) and cos(piTz/L);
where p is an integer and L is the height of the cavity. Since this analysis is
not really dependent upon the trigonometric functions we suppress them in the
equations to follow.

We are really interested in computing the frequencies of oscilla-

tion of the system depicted in Figure 1. To do so we must match the

solutions in the various regions across the membranes and then finally require

to be equal to zero at the tank wall. In region I the solution is

~ 
—.‘~~~~~(‘ “) , (25)

and from Equations 24 and 25

E1 -.,f~~ - iJ0(kr) . (26)

The symbo l .4’in Equations 4 and S represents a constant to be determined ;

the subscript I represents region I. Jq are Bessel functions of order q .

In region II the fields are

B11 = eJ1 (kr) 
+ bN 1 (kr) , (27)

and

- i (eJ0(kr) + bN0(kr))ck/w , (28)

where e and b are constants to be determined and Nq is a Neuman function of

order q . In region III the fields are

B 111 = J 1 (kr) + f~’.1 (kr) , (29)

and

= - i(J0(kr) 
+ fN 0 ( k r ) ) c k/w . (30)

13
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To find the four constants,~~ b, e, and f we apply the boundary conditions

across membranes 1 and 2. The boundary conditions are :

- B1 4iiE /c Re1 , r = R
1 , (31)

E11 ~ 
E1 ~ 

, at r = R1 , (32)

for membrane 1 and

B111 
- B11 

= 4irE /c R 2 , r = R 1 , (33)

E111 ~ 
= E11 ~ 

, at r = R2 , (34)

for membrane 2, where Req is the sheet resistance of membrane q. Inserting

Equations 25 through 30 into Equations 31 through 33 we end up with the four

equations

fa 11 
+ ea12 + ba13 

= h1 , (35)

fa21 + ea22 + ba
23 = h2 , (36)

ea32 
+ ba33 + aa

31 
= 0 , (37)

ea42 + ba43 + aa44 
= 0 , (38)

where

a11 
= - N1(xa 2 ),a12 = J

1
(xa

2) - z2J0(xct2)

a
13 

= N1 (xa2) - z2n0(xa 2),h1 = J1 (xa2)

a
21 

= - N0(xa2 ),a
22 

= J
0

(xa2)

a23 
= N0(xa 2) , h2 = J

0
(xa 2)

(39)
a
32 J1 (xa

1
) , a33 N 1

(xa
1)

a34 = z
1J0(xa 1

) - J
1 (xa 1)

a42 
= - J

0(xct1
) , a43 = - N0 (xcz1)

a44 J0(xa 1) ,

15
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and where we have used the definition :

k R E x  , (4 0)

R 1/R , (41)

a2 R 2 /R , (42)

and

411 \ c k
— \ C R ~~~ w

— . 1 411 \ ck
= i~~—~ .--——j — . (44)

To find k (or x) we must solve for f in the system of Equations 14 through 17 and

set E111 ~ 
at r = R equal to zero. That is we must solve the region III equation

J0(x) + fn0(x) 0 , (45)

where we use the relation

-1/2

= (1 + ( R)2) , (46)

in z 1 and z 2 when we solve for f .  If only membrane 2 were present then f

would be

z 2 ( j 0 (xcz2 ) ) 2
= 

N0
(xa

2
)( J

1
(xcz

2
) - z

2
J

0
(xcz

2
) )  - N 1(xa 2 )J 0 (xcz2 ) )  . (47)

Recogniz ing  that

J 1 ( y ) N 0 (y)  - J0(y)N 1 (y) 
= 2 / ny  , (48)

Equat ion 47 becomes

z2(J0(xcx2))
2

2 . (49)
- z

2
N

0
(xa

2
)J

0
(xa

2
)

16
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Substituting Equation 49 into Equation 45 we find that the equation that

must be solved to obtain the complex frequencies , for one membrane , is

.J
0

(x) + ~~
- xa,z 2J0

(xa 2 ) ( N 0 (x)J
0

(xct 2 ) - N
0

(xa2)J
0(x)) 

= 0 (50)

3.2 AN APPROXIMATION FOR ONE AND TWO SHEET DAMPERS

An approximate solution to Equation 50 can be made by assuming that

roots ~~~ with the damper (z2 finite in Equation 50) are not much different

than the roots without the damper x . That is we assume thatn

x = x ° + 6  , (51)np n np

where 6np is the small change from the zero order root . Under this first

order assumption the 6
np for more than one damper would simply be the sum

of the 6
np for each damper alone. Substituting Equation 51 into Equation

50 and using Equat ion 46 we f ind that

- J 6 + ió I z  I S  + igx0~z = 0 , (52)l n p  np 0 n 0

where

g (x) E n/2aJ 0 (xa) (N 0 (x)J 0 (xa) - N0
( xcx)J

0
(x) ) , (53)

S = g(x~ ) ( l  + A~~ ) + x° —
~
j- (54)

Anp = L~~~(l + L
np ) ’ (55)

L = 12~.?~ , (56)np

ck,4 r~ 0z = i—i —— ~570 ~cR ‘ w

17
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0 -1/’
— (1 + I ) , (58)np

and where we have used the fact  that

- 

~ l (59)

The subscript 2 has also been dropped in Equation 50 since we need only

consider one membrane in the present discussion . Letting

6 = 6R + i61 , (60)np np np

in Equation 52 while noting that g(x~) and S are real numbers we find that

0 0 0

~ 
x I z 0I g(x~)J

1 (x)

J~~(x~ ) + z~ I
2
S2 ‘ (61)

and

2 0  0
= - 

z 0 x~ g(x~ ) 
6’np 2 0  2 2 ~~ 

C — )
+ 1z 0 1 S

From Equation 53 wi th  the know ledge tha t x~ is a root of J0 it can eas i ly  be

shown that

g(x~) = ~J~ (x~ci)N0(x 0) , (63)

and that

S = I3J0(x°cz)[N 0(x°)J
0

(x°a)(l+A~~) + x 0
(- 2ctN

0
(x0)J

1
(x°ct)

+ N0(ax~ )J
1 (x~) - N1

(x °)J 0 (x °a ) )J  , (64)

where

(65) 

_
~~

_ _ _.__±



Note that N
0

(x~) is almost equal to J 1
(x~) in Equation 61 so that 6’~ is

pos i t ive  d e f i n i t e .

Equations 61 and 62 are the equations which show how the wave

number of the cav i ty  mode changes when a damper shel l  is introduced into

a cylindrical cavity. In order to investigate the modal damp ing we w i l l

first need to express the new modal frequency in terms of ~~~ We will

then optimize the damping for a particular mode by find ing what value of

Re makes the imaginary portion of the angular frequency, w
’
1~
, a maximum for

a given damper position . The frequency w~~, for the n ,p mode of a tank is

2 2

~~ = + 
~~~2 

, (66)

where we have used Equations 40 and 46. Substitut ing Equation 51 into 66

we find that

2 —1/2
= ~~ - cS ’ (1 + (21!!i \ \ . (67)np R np~~ \x°L / /

We therefore see that maximizing the damping of the n ,p mode requires maximiz-

ing S1~ . Taking the derivative of with respect to 1z 01 in Equation 61

and setting the result equal to zero we find the value of Iz O j , I z O I M which
makes 6 1 a maximum:

np 

IZ O I M ~~j~is
2 . (68)

Substituting Equation 70 into 69 we find the value of 61 ~, (6 1 ) , wh ichnp n p M
i s max im um for a given pos it ion of the damper , namely

(6 ’ )M = .Sj g(x~)/SIx
0 

. (69)

Note that  (6 1) w i l l  be zero (when E
~ 

is zero) if the damper position is at
the w a l l  of the c y l i n d e r .  That is when J 0 (cix~ ) = 0. This result is in

direct contrast to Equation 10 which implies that damping should be best at

19



the wall. As noted in Section 2, Equation 10 was derived under an erroneous

assumption for the functional dependence of the field. Equation 69 is one

of the equations we will be discussing in the next section . It , together

with Equation 67, describe how the damping constant for the np mode depends

upon position of the damper . Equation 68 contains the information necessary

to determine the resistance of the damper sheet necessary for optimum damp-

ing. Using Equations 63, 68 and 61 we can put Equation 70 into a directly

usable  form

2 -1/2
R = 1207r(l + (2~E~) ) 1J 1/ SI (ohms) . (70)

Equation 70 will also be discussed in the next section.

20
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SECTION 4

RESULTS

In this section we will e~ aluate the optimum damp ing resistance

from Equation 70 for a number of n ,p modes as a function of damper position.

l~e will also evaluate 6 with the optimum resistance as a funct ion of
np

damper position , for a number of modes. The restriction on 6 will be

that it must be smaller than x
1, 

for the damping constant to be meaningful.

How the damping changes as the resistance deviates from the optimum value

is also discussed . Finally a table of values of Q for modes , S ~ n 
< 1

0 ~ p 10, is constructed for a sheet damper at two positions , ~~= .8 and

= .92. These t~.o positions correspond , roughly, to the sheet damper

positions in the Physics International (P1) tank during the MRC March 1977

photon experiments.

Fi gures 2 through 4 are plots , for three representative values of

p, of optimum resistance vs. damper position divided by the cylin der rad iu s

(a). The labels A to F correspond to n = 1 to S respectively. In general

the resistances oscillate (except for n 1) between zero and some larger

value . Larger values of resistance occur for larger n ’s hut , in genera l ,

decrease for increasing p. (n is associated with the number of nodes in the

r direct ion and p with the number of nodes in the z dir ection.) The reduction

of resistance with increasing p is associated with the fact that as p increases

the electric field in the z direction becomes a smaller fraction of the total

electric field so that a larger sheet current is necessary (smaller resistance)

to obtain optimum damping. Fi gures 5 through 19 are a select i on of ó t vs. ~.
In conjunct i on with Equat i on 67 they can be used for desi gning a damper for modes

21
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Figure 2. Optimum resi stance vs. a, for p = 0, n ~ 5.
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FIgure 3. OptImum resistance vs. a, p = 5, n ~ 5.

22 



‘p

- -- 
_ _ - I

/~~/ \  /
~~~~ \

\\
0 

~ ~~~ /
/ 
~~

-A-AJ-
~

0.70 ~I .75 ~.80 0.85 ~~~~ O,s~ ~~~~

Figure 4. Optimum resistance vs . a , p = 10 , n = 5.

(1)

I I

:~~ ~.

N

‘0

_ 
- I

0. 70 ~~ 0•8’~ ~.85 0.90 ~~~ 1 . 1,

Figure 5. 6~~ V S .  ci.

23

- =-~~~ -_ _  - - _  - -
~~
_ _ _ _



1=
I I I - -

‘0

0,7~ ~~.-~I) 0 .8 5  0 .t ~0 ~~ ,

a

- 

Figure 6. 

!

6

~
O VS • a. 

I

H

‘~JLI~~~~~~ 0 .75  0 .~~ 0.~~S 0 .90  ~~~~ 1. ~’~’

a

Figure 7. S~0 VS.  ci.

24



I I

-

In
N

‘0 I

0. 7e 0 .75 ~ .80  e . 8~ Ø. ’~1 ‘II .~~~~ L . ’

a

Figure 8. VS. ci.

(IJ L -.

0
‘0

I -
~

0 .75  0 .80  0.85 0.90 0,95 I. . ”’

a

Figur e 9. VS.  ci.

25

_ -  

~~--
_ - --~~~~~-- - .  . - _ - -



V

~~ ~~ I

~~~

Figure 10. 6
~2 V S~ i j•

H 

~~~~~~~~~~~~~~~ ~~~~~~~~~
~
‘0.70 0.75 1.81 0 ~ o i. ..’

FI gure 11 . ~~ VS~ ci.



I I

c’.JI..,,
‘C

~0.70 0.75 0.88 0.85 0.90 0.9~ ~~
a

Figure 12. 6
~2 

VS~ ci.

In
1”.

c.’J
‘C ~

In

0.75 0.80 0.85 0.90 0.95 1.00

a

Figure 13. iS
~2 

vs. a.

— . 

27



I I I

AJ

c~j

‘0

I’;

‘
I I

0.76 0.75 0.80 0.85 0.90 0.95 1 . .l~

ci

Figure 14. 

I

6

~
2 VS~ a. 

I

0,75 0.80 0.85 0.90 0.~.t 1 . 11

a

Figure 15. vs. a.

28



I 1 I I I

U,

~~~~~~~~~~~~4T~~~~R
~0.7t ’ 0.75 0.80 0.85 0.90 0. -.’• t.~’

a

Fig~~~ 16.

, 
~~ ci.

0.70 0.75 0.80 0.95 0.90 0.9~ I . I~~

a

gure . 635 vs. a.

., _



z 
________________________________________________

I I 1

U,
‘C

~~.70 0.75 0.80 0.85 0.90 0.95 t.~~’

a

Figure 18. iS~~ VS. a.

In I

U)U,
‘0

0.10 0.75 0.80 0.85 0.90 0.95 1.00

a

Figure 19. 655 vs. a.

30

I
— - - - — 1.’- — - - - ___________- - — -.

__________________________________________  —



of a cylindrical cavity. The restriction on their use is that the figures are
0to be considered valid when 6 <

x° = 2 .405 , 5.520 , 8.654,

niT - ir/4

In Figures 5 through 19 the curves are plotted for a useful ~ range
0.7 ~ t < 1. The curves are truncated for ~~~ x
n 

(for  example 625 in

Figure 16 appears flat at the peak where 625 
> x~ ) .

We now use Figures 2 through 19 , and similar curves which are

not presented , to construct a table of Q’s for modes 1 < n ~ 5 0 p ~ 10
for a two sheet damper. To construct this table we first develop an expres-

sion for the Q for the n,p mode of a cylindrical cavity, Beginning

from Equation 67 the time , t , for the fields to decay to e ’ of their

initial value is

t = —
~~
---- (1 + L ) l/2  , (7 1)np c6 1
np

where L~~ is given by Equation 56. Since the energy goes as the fields

squared the time T~ (defined as the damping t ime) for the energy to decay

to e of its initial value is
Tnp 

= ~5 tnp . (72)

Thus from Equations 72 and 71 , the expression for the period of the n ,p mode

= (1 + Lnp)~
”2 

~ (7 3)

and the definition

(74)

we have
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0

= A- _ L  (1 + L~~) . (75)

It is interesting to note that is independent of the dimensions of the

tank ; 
~no is dependent on the relative positions of the dampers , however.

We construct Table 1 by looking up values of 6
np in the figures

adding them for the two damper sheets , at ci .8 and .92, and inserting the

values in Equation 75 where we take R/L = 1/3 , rough ly the dimensions of the
P1 vacuum tank. For example Q0 is constructed in the following way: from

Figure 5 for a = .8 is .155 and 
~1O 

for ci = .92 is .047. Adding the total

is .20. Since L
10 is zero

— 
1 (2.4) 

=
.2

Tables 4 and S are constructed by looking up the va lues  for R on F igures
2 through 4 and similar figures not presented in this report . Tables

indicates how valid the approximation x°/6~~ > 1 is . Table 3 indicates
what the actual damp ing times are for the n ,p modes of the P1 tank (R 2 m ,

L 6 m) with optimum resistance dampers placed at ~ = .8 and ci = .92.

We now consider the effect on 61 for deviations away from the
np

opt imum res is tance  value . Our goal is to determine the effect on for

a damper that is not optimized with respect to resistance. If U

represents the ratio of the non-optimized 6~ , to ~
6
n~~M 

(Equation 69) and
Znp represents the ratio of the non-optimized 1z 01 (see Equation 57) to

I ZO I M (Equation 68) then by means of Equations 61 , 68 and 69 we can show that

u 
2 Znp 

(76)rip 1 + (z )2np

Fi gure 20 is a plot of Equation 76 and can be used to find for a damper

of arbitrary resistance. For example if the actual resistance of the damper
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Table 1. Q(n ,p) for two damper sheets at x = .8
and ~ = .92.

0 1 2 3 4 5 6 7 8 9

1 .956 1.09 1.49 2.15 3.08 4.28 5.74 7.47 9.46 11.7 14.2

2 1.54 1.57 1.67 1.83 2.06 2.35 2.70 3.11 3.59 4.13 4.73

3 .485 .511 .588 .715 .891 1.11 1.38 1.70 2.06 2.47 2.93

4 6.68 6.73 6.89 7.16 7 .53 8.02 8.60 9.30 10.1 11.0 12.0

5 11.8 11.8 12.0 12.2 12.5 13.0 13.5 14.1 14.9 15.7 16 .6

Table 2. ~~~~~ for two damper sheets at ci = .8
and -

~ = .92 .

____ 
0 1 2 3 4 5 6 7 8 9 10

1 12.0 11.5 10.6 10.0 9.62 9.38 9.22 9.12 9.05 9.00 8.96

2 19.4 19.1 18.4 17.4 16.4 15.5 14.8 14.1 13.6 13.2 12.9

3 61.0 6.33 6.98 7.93 9.07 10.2 11.4 12.4 13.4 14.2 14.9

4 83.9 83.9 84.0 84.0 84.1 84.1 84.2 84.3 84.3 84.3 84.3

5 148 148 148 147 145 145 144 143 142 141 140
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Ta ble 3. Dampin g time T~ for TM cylindrical tank
modes ( i n nanos~conds).

0 1 2 3 4 5 6 7 8 9 10

1 33.3 34.8 39.2 45.7 53.6 62.3 71.6 81.2 91.0 101 111

2 23.4 23.5 23.7 24.2 24.9 25.9 27.1 28.4 30.0 31.7 33.5

3 4. 70 4.91 5.53 6.51 7.76 9.24 10.8 12.5 14.3 16.2 18.1

4 47.5 47.6 48.2 49.2 50.5 52.1 54.0 56.1 58.5 61.1 63.8

5 66.3 66.4 66.7 67.3 68.0 69.0 70. 1 71.5 73.0 74 .7 76.5

Table 4. Optimum resistance (ohms) for sheet at
ci = .8.

n\  0 1 2 3 4 5 6 7 8 9 10

1 109 94.6 70.9 53.1 41.5 33.7 28.4 24.4 21.4 19.1 17.1

2 116 113 102 89.9 77.1 65.1 56.6 56.6 42.6 38.4 33.9

3 17.4 16.1 19.2 19.3 21.3 24.6 24.5 24.5 27.2 26.1 27.1

4 105 105 104 103 101 98.4 96.1 93.3 90.0 87.2 83.7

5 30.6 33.8 30.3 33.2 32.7 28.9 31.3 30.5 26.8 28.8 25.2
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Table 5. OptimiMi resistance (ohms) for sheet at
a = .92.

p
n 0 1 2 3 4 5 6 7 8 9 10

1 62.9 56.2 45.5 35.6 28.8 24.2 20.5 17.8 15.8 14.1 17.1

2 130 127 120 110 99.4 90.1 80.7 73.0 66.7 60.6 33.9

3 165 163 159 153 145 137 128 120 66 .7 105 27 .1

4 160 160 156 154 149 143 138 132 112 119 83.7

5 115 119 114 116 113 107 107 103 124 35 .4 25.2

is twice the optimum value then ~~ will be 80 percent of the optimum

value . Since Q
~, 

varies inversely as 6’~ . Q~ 
will be 25 percent larger

than opt imum .
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SECTION 5
CONCLUSIONS

In Section 2 of this report we discussed the basic physical con-

c ’1)tS underlying resistive sheet dampers by means of an oversimplified

example. In Sections 3 and 4 we obtained the ac tual equat i ons for two

cylindrical dampers with no end caps . The equations were solved in first

order . Table 1 indicates that many of the modes damp to -l of their
initial value in about one modal period . Tables 4 and S indicate that ,

depend ing on the particular mode to be damped , the optimum sheet resistance

can vary from 14 to 165 ohms . Although damping isn ’t a rapidly vary ing function

of resistance it is still important , in building the damper , to have some

idea what modes need to he damped .

The cylindrical sheet damper , with no end caps , becomes an in-

cr eas ing l ’1’ poorer damper , as the frequency of the cavity increases (if the

increasi ng frequency is due t I  an increasing number of nodes in the z direc-

tion only). As the frequency increases in this manner a smaller percentage

of the electric field energy is associated with the z direction . Since it

is the electrk field in the direction that causes the absorption of

energy by the damper the cylindrical sheet damper with no end caps becomes

1 poorer damper. If one were interested in damp ing these higher frequency

TM modes It would he nec ssary t o  add end caps to the damper.

- - . - - - - 
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